☀️ Dalam Getaran Harmonik Percepatan Getaran
Gerakharmonik sederhana adalah gerak bolak - balik benda melalui suatu titik keseimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan.[1]. Contoh gerak harmonik sederhana. Gerak Harmonik Sederhana dapat dibedakan menjadi 2 bagian, yaitu:[1] Gerak Harmonik Sederhana [GHS] Linier, misalnya penghisap dalam silinder gas, gerak osilasi air raksa / air dalam pipa U
Olehkarena A sin (ωt + θ 0) merupakan fungsi y, persamaan percepatan gerak harmonik dapat ditulis sebagai berikut.. ay = -ω 2 y. Tanda negatif menunjukkan bahwa arah percepatan selalu berlawanan dengan arah simpangan. Percepatan maksimum gerak harmonik sederhana terjadi ketika nilai sin (ωt + θ 0) = 1.Dengan demikian, percepatan maksimum gerak harmonik sederhana dirumuskan:
Vmerupakan kecepatan ya. Rumus kecepatan v pada gerak harmonik sederhana adalah A sin wt, kemudian diturunkan menjadi A w cos wt. Persamaan Percepatan pada GHS. Persamaa percepatan pada GHS adalah turunan kecepatan terhadap waktu. a = dv/dt. a = d(Aw cos wt)/dt. a = -Aw 2 sin wt. karena. y = A sin wt. maka. a = -w 2 y. Dalam persamaan atau rumus Gerak Harmonik Sederhana juga berhubungan dengan percepatan.
87Elastisitas dan Getaran Harmonik Karena nilai maksimum dari simpangan adalah sama dengan amplitudonya y = A, maka percepatan maksimumnya a maks gerak harmonik sederhana adalah sebagai berikut. a maks = - Z 2 A Sebuah partikel bergerak harmonik sederhana dengan frekuensi 50 Hz dan mempunyai amplitudo 0,2 m.
Getaranharmonis memiliki beberapa ciri, diantaranya sebagai berikut: Gerakan yang terjadi pada getaran harmonis yaitu berupa gerakan bolak balik. Titik kesetimbangan yang berada ditengah lintasan pun pasti dilewati oleh gerakan tersebut. Adanya percepatan yang bekerja pada getaran harmonis
Tentukanbeberapa besaran dari persamaan getaran harmonis tersebut: a) amplitudo b) frekuensi c) periode d) simpangan maksimum e) simpangan saat t = 1/60 sekon f) simpangan saat sudut fasenya 45° g) sudut fase saat simpangannya 0,02 meter Pembahasan Pola persamaan simpangan gerak harmonik diatas adalah a) amplitudo atau A y = 0,04 sin 20π t ↓
1- 11 Soal Getaran Harmonik dan Pembahasannya 1. Seutas kawat berdiameter 2 cm digunakan untuk menggantungkan lampu 31,4 kg pada langit-langit kamar. Tegangan (stress) yang dialami kawat sekitar (g=10 m/s 2) a. 0,1 kN/m 2 b. 1 kN/m 2 c. 10 kN/m 2 d. 100 kN/m 2 e. 1000 kN/m 2 Pembahasan : 2.
Jawabanpada satu kali getaran percepatan maksimum terjadi sebanyak 2 kali. Pembahasan Pada gerak harmonik, percepatan maksimum terjadi ketika nilai y = A sesuai persamaan . Dalam satu kali getaran, benda mencapai posisi amplitudo sebanyak 2 kali. Oleh karena itu, benda mengalami 2 kali percepatan maksimum.
Gerakharmonik sederhana adalah gerak bolak - balik benda melalui suatu titik keseimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan. Pengertian ini diambil dari internet. Simbol g digunakan sebagai satuan percepatan. Dalam fisika s2 (meter per detik 2 2.
Tanya 10 SMA. Fisika. Gelombang Mekanik. Persamaan getaran harmonik dinyatakan sebagai fungsi waktu y=10 sin (10 pi t+pi/2), dengan y dalam cm dan t dalam s. Tentukan: a. amplitudo, kecepatan, frekuensi, dan periode, serta b. simpangan, kecepatan, dan percepatan saat t=0 s. Persamaan Simpangan, Kecepatan, dan Percepatan.
Dilihatdari Persamaan diatas dapat disimpulkan bahwa dalam gerak harmonis, percepatan getar benda berbanding lurus dengan simpangannya. semakin besar simpangannya maka semakin besar pula percepatannya. Keterangan : a maks = percepatan maksimum (m/s 2) A = amplitudo (m) = kecepatan sudut (rad/s) Energi Gerak Harmonik
KompetensiDasar : Menganalisis hubungan gaya dan gerak getaran. Indikator : 1. Menyebutkan gerak harmonik sederhana. 2. Menganalisis simpangan, kecepatan, percepatan pada gerak harmonik sederhana. 3. Menentukan persamaan gerak harmonik pada pegas. 4.
s2YLsAS. Gerak Harmonik Sederhana – Gerakan harmonik ini yakni mempunyai suatu amplitudo konstan deviasi maksimum dan frekuensi. Pergerakan itu periodik. Setiap gerakan diulangi dan dilakukan terus menerus pada interval waktu sama. Dengan gerakan harmonik sederhana, gaya yang dihasilkan persis arah yang sama dengan yang mendekati arah keseimbangan. Gaya ini disebut gaya pemulihan. Gaya pemulih berbanding lurus dengan posisi objek sehubungan dengan keseimbangan. Apa itu Gerak Harmonik Sederhana ?Karakteristik Gerakana. Simpanganb. Kecepatanc. Energid. PercepatanSyarat Getaran HarmonikPeriode dan Frekuensi Getaran Harmonika. Periode dan Frekuensi Bandul Sederhanab. Periode dan Frekuensi Sistem Pegas Pengertian Gerak Harmonik Sederhana merupakan bahwa objek berubah secara konstan pada titik kesetimbangan, jumlah getaran per detik harus konstan atau sama. Gerakan harmonik ini yakni dapat disebabkan oleh benda yang memiliki kekuatan mereka dapat mendorong atau menarik dan memiliki kekuatan penyembuhan, misalnya dalam memperluas dan memecah pegas dari titik setimbang karena kekuatan. Jika pada musim semi getaran, gaya awal dihubungkan dengan hukum kait. Dalam konsep gerakan harmonik ada beberapa besaran fisik yang diperoleh dari objek berosilasi, yakni Simpangan y = Jarak benda dalam dari kesetimbanganPeriode T = Banyaknya dalam waktu yang satu getaranFrekuensi f = Getaran setiap waktuAmplitude A = Simpangan yang maksimum Dengan materi ini adanya berbagai kondisi sebagai terjadinya suatu fenomena yang disebut sebagai gerakan harmonik sederhana, yakni Getaran mempercepat atau memaksa aksi menuju untuk mengembalikan inersia yang dapat menyebabkan overshoot melewati posisi dalam adanya suatu keseimbangan. Karakteristik Gerakan Berdasarkan karakteristik adanya berbagai karakteristik dalam gerakan tersebut, yakni a. Simpangan Simpangan dalam getaran harmonik ringan bisa dilihat sebagai prediksi partikel bergerak dalam bentuk lingkaran dengan diameter lingkaran. Secara umum, rumus untuk penyimpangan dalam gerakan adalah sebagai berikut. y = Simpangan getaran mT = Periode s = Kecepatan sudut rad/sf = Frekuensi HzA = Amplitudo/simpangan maksimum m b. Kecepatan Kecepatan adalah turunan dari posisi pertama. Untuk gerakan harmonik sederhana, kecepatan yang dapat diturunkan dari turunan pertama dari rumus deviasi. c. Energi Persamaan energi dalam gerakan harmonik sederhana termasuk energi kinetik, energi potensial dan energi mekanik. Energi kinetik dapat diringkas sebagai berikut. k = Nilai ketetapan N/mA = Amplitudo m = Kecepatan sudut rad/st = Waktu tempuh s Jumlah energi potensial dan energi kinetik dari objek bergerak dalam harmoni sederhana tetap merupakan nilai konstan. d. Percepatan Percepatan terhadap suatu objek kopling harmonik sederhana dapat diperoleh dari turunan pertama dari rumus kecepatan atau turunan kedua dari persamaan deviasi. Persamaan percepatan dapat diperoleh sebagai berikut. Deviasi maksimum memiliki nilai yang sama dengan amplitudo y = A, oleh karena itu percepatan maksimumnya ialah am=- Aw Syarat Getaran Harmonik Kebutuhan akan gerakan bicara adalah getaran harmonis, termasuk Gerakan periodik mundur.Gerakannya selalu melewati posisi atau memaksakan efek pada objek yang sebanding dengan posisi atau dalam penyimpangan akselerasi atau gaya yang bekerja pada suatu benda menciptakan keseimbangan. Periode dan Frekuensi Getaran Harmonik Adapun dengan berbagai periode dan frekuensi dalam getaran ini, diantaranya ialah sebagai berikut a. Periode dan Frekuensi Bandul Sederhana Sebuah pendulum sederhana terdiri dari massa yang digantungkan di ujung tali ringan massa terabaikan dari 1. Ketika beban ditarik ke satu sisi dan dilepaskan, beban memecah titik kesetimbangan ke sisi lainnya. Jika amplitudo ayunan rendah, bandul menciptakan getaran harmonis. Frekuensi dan frekuensi osilasi di pendulum sama dengan di musim semi. Artinya, waktu dan frekuensi dapat dihitung dengan membandingkan kekuatan pemulihan dan centripetal. b. Periode dan Frekuensi Sistem Pegas Padahal, gerakan harmonik adalah gerakan melingkar tidak beraturan di salah satu gelombang utama. Oleh karena itu, waktu dan frekuensi dalam pegas dapat dihitung dengan menambahkan gaya pemulihan F = -kX dan gaya sentripetal F = -4π2 mf2X. Durasi dan frekuensi sistem beban pegas hanya bergantung dalam suatu massa dan konstanta pegas. Baca Juga Demikianlah pembahasan kali ini, yang telah kami sampaikan secara lengkap dan jelas yakni mengenai Gerak Harmonik Sederhana. Semoga ulasan ini, dapat berguna dan bermanfaat bagi Anda semuanya.
College Loan Consolidation Wednesday, December 17th, 2014 - Kelas XI Getaran harmonik atau getaran selaras memiliki ciri frekuensi getaran yang tetap. Pernahkan kita mengamati apa yang terjadi ketika senar gitar dipetik lalu dilepaskan? kita akan melihat suatu gerak bolak-balik melewati lintasan yang sama. Gerakan seperti ini dinamakan gerak periodik. Contoh lain gerak periodik adalah gerakan bumi mengelilingi matahari revolusi bumi, gerakan bulan mengelilingi bumi, gerakan benda yang tergantung pada sebuah pegas, dan gerakan sebuah bandul. Di antara gerak periodik ini ada gerakan yang dinamakan gerak Pengertian Getaran Harmonik Gerak harmonik merupakan gerak sebuah benda dimana grafik posisi partikel sebagai fungsi waktu berupa sinus dapat dinyatakan dalam bentuk sinus atau kosinus. Gerak semacam ini disebut gerak osilasi atau getaran harmonik. Contoh lain sistem yang melakukan getaran harmonik, antara lain, dawai pada alat musik, gelombang radio, arus listrik AC, dan denyut jantung. Galileo di duga telah mempergunakan denyut jantungnya untuk pengukuran waktu dalam pengamatan gerak. Gerak benda pada lantai licin dan terikat pada pegas untuk posisi normal a, teregang b, dan tertekan c Untuk memahami getaran harmonik, kita dapat mengamati gerakan sebuah benda yang diletakkan pada lantai licin dan diikatkan pada sebuah pegas . Anggap mula-mula benda berada pada posisi X = 0 sehingga pegas tidak tertekan atau teregang. Posisi seperti ini dinamakan posisi keseimbangan. Ketika benda ditekan ke kiri X = – pegas akan mendorong benda ke kanan, menuju posisi keseimbangan. Sebaliknya jika benda ditarik ke kanan, pegas akan menarik benda kembali ke arah posisi keseimbangan X = +. Gaya yang dilakukan pegas untuk mengembalikan benda pada posisi keseimbangan disebut gaya pemulih. Besarnya gaya pemulih menurut Robert Hooke dirumuskan sebagai berikut. Fp = -kX Tanda minus menunjukkan bahwa gaya pemulih selalu pada arah yang berlawanan dengan simpangannya. Jika kita gabungkan persamaan di atas dengan hukum II Newton, maka diperoleh persamaan berikut. Fp = -kX = ma atau Terlihat bahwa percepatan berbanding lurus dan arahnya berlawanan dengan simpangan. Hal ini merupakan karakteristik umum getaran harmonik. Syarat Getaran Harmonik Syarat suatu gerak dikatakan getaran harmonik, antara lain Gerakannya periodik bolak-balik. Gerakannya selalu melewati posisi keseimbangan. Percepatan atau gaya yang bekerja pada benda sebanding dengan posisi/simpangan benda. Arah percepatan atau gaya yang bekerja pada benda selalu mengarah ke posisi keseimbangan. Periode dan Frekuensi Getaran Harmonik a. Periode dan Frekuensi Sistem Pegas kita telah mempelajari gerak melingkar beraturan di kelas X. Pada dasarnya, gerak harmonik merupakan gerak melingkar beraturan pada salah satu sumbu utama. Oleh karena itu, periode dan frekuensi pada pegas dapat dihitung dengan menyamakan antara gaya pemulih F = -kX dan gaya sentripetal F = -4π 2 mf2X. -4π 2 mf2X = -kX 4π 2 mf2 = k Periode dan frekuensi sistem beban pegas hanya bergantung pada massa dan konstanta gaya pegas. b. Periode dan Frekuensi Bandul Sederhana Sebuah bandul sederhana terdiri atas sebuah beban bermassa m yang digantung di ujung tali ringan massanya dapat diabaikan yang panjangnya l. Jika beban ditarik ke satu sisi dan dilepaskan, maka beban berayun melalui titik keseimbangan menuju ke sisi yang lain. Jika amplitudo ayunan kecil, maka bandul melakukan getaran harmonik. Periode dan frekuensi getaran pada bandul sederhana sama seperti pada pegas. Artinya, periode dan frekuensinya dapat dihitung dengan menyamakan gaya pemulih dan gaya sentripetal. Gaya yang bekerja pada bandul sederhana Persamaan gaya pemulih pada bandul sederhana adalah F = -mg sinθ . Untuk sudut θ kecil θ dalam satuan radian, maka sin θ = θ . Oleh karena itu persamaannya dapat ditulis F = -mg . Karena persamaan gaya sentripetal adalah F = -4π 2 mf2X, maka kita peroleh persamaan sebagai berikut. -4π 2 mf2X = -mg 4π 2 f2 = Periode dan frekuensi bandul sederhana tidak bergantung pada massa dan simpangan bandul, tetapi hanya bergantung pada panjang tali dan percepatan gravitasi setempat. Persamaan Getaran Harmonik Persamaan getaran harmonik diperoleh dengan memproyeksikan gerak melingkar terhadap sumbu untuk titik yang bergerak beraturan. a. Simpangan Getaran Harmonik Simpangan getaran harmonik sederhana dapat dianggap sebagai proyeksi partikel yang bergerak melingkar beraturan pada diameter lingkaran. Gambar diabawah melukiskan sebuah partikel yang bergerak melingkar beraturan dengan kecepatan sudut dan jari-jari A. Anggap mula-mula partikel berada di titik P. Proyeksi gerak melingkar beraturan terhadap sumbu Y merupakan getaran harmonik sederhana. Perhatikan gambar diatas. Setelah selang waktu t partikel berada di titik Q dan sudut yang ditempuh adalah θ = t = . Proyeksi titik Q terhadap diameter lingkaran sumbu Y adalah titik Qy. Jika garis OQy kita sebut y yang merupakan simpangan gerak harmonik sederhana, maka kita peroleh persamaan sebagai berikut. Y = A sin θ = A sin t = A sin Besar sudut dalam fungsi sinus θ disebut sudut fase. Jika partikel mula-mula berada pada posisi sudut θ0, maka persamaanya dapat dituliskan sebagai berikut. Y = A sin θ = A sin t + θ0 = A sin +θ0 Sudut fase getaran harmoniknya adalah sebagai berikut. Karena Φ disebut fase, maka fase getaran harmonik adalah sebagai berikut. Apabila sebuah benda bergetar harmonik mulai dari t = t1 hingga t = t2, maka beda fase benda tersebut adalah sebagai berikut. Beda fase dalam getaran harmonik dinyatakan dengan nilai mulai dari nol sampai dengan satu. Bilangan bulat dalam beda fase dapat dihilangkan, misalnya beda fase 2¼ ditulis sebagai beda fase ¼. b. Kecepatan Getaran Harmonik Kecepatan benda yang bergerak harmonik sederhana dapat diperoleh dari turunan pertama persamaan simpangan. Mengingat nilai maksimum dari fungsi cosinus adalah satu, maka kecepatan maksimum vmaks gerak harmonik sederhana adalah sebagai berikut. vmaks = A c. Percepatan Getaran Harmonik Percepatan benda yang bergerak harmonik sederhana dapat diperoleh dari turunan pertama persamaan kecepatan atau turunan kedua persamaan simpangan. ay = A [- sin wt + θ 0] ay = - 2A sin t + θ 0 ay = - 2y Karena nilai maksimum dari simpangan adalah sama dengan amplitudonya y = A, maka percepatan maksimumnya amaks gerak harmonik sederhana adalah sebagai berikut. amaks = – 2 A Energi Getaran Harmonik Benda yang bergerak harmonik memiliki energi potensial dan energi kinetik. Jumlah kedua energi ini disebut energi mekanik. a. Energi Kinetik Gerak Harmonik Cobalah kita tinjau lebih lanjut energi kinetik dan kecepatan gerak harmoniknya. Karena Ek =½ mvy2 dan vy = A cos t, maka Energi kinetik juga dapat ditulis dalam bentuk lain seperti berikut. Ek maks = m 2 A2, dicapai jika cos2 t = 1. Artinya, t harus bernilai , , …, dan seterusnya. y = A cos t y = A cos y = A di titik setimbang Ek min = 0, dicapai bila cos2 t = 0. Artinya, t harus bernilai 0, π , …, dan seterusnya. y = A cos t y = A cos 0 y = A di titik balik Jadi, energi kinetik maksimum pada gerak harmonik dicapai ketika berada di titik setimbang. Sedangkan energi kinetik minimum dicapai ketika berada di titik balik. b. Energi Potensial Gerak Harmonik Besar gaya yang bekerja pada getaran harmonik selalu berubah yaitu berbanding lurus dengan simpangannya F = ky. Secara matematis energi potensial yang dimiliki gerak harmonik dirumuskan sebagai berikut. Ep = ky2 Ep = m 2 A sin t2 Ep = m 2 A2 sin2 t Ep maks = m 2 A2 dicapai jika sin2 t = 1. Artinya t harus bernilai , 3, … , dan seterusnya y = A sin y = A di titik balik Ep min = 0, dicapai jika sin2 t = 0. Artinya, t harus bernilai 0, π , …, dan seterusnya. y = A sin t y = A sin 0 y = 0 di titik setimbang c. Energi Mekanik Gerak Harmonik Energi mekanik sebuah benda yang bergerak harmonik adalah jumlah energi kinetik dan energi potensialnya. Berdasarkan persamaan diatas, ternyata energi mekanik suatu benda yang bergetar harmonik tidak tergantung waktu dan tempat. Jadi, energi mekanik sebuah benda yang bergetar harmonik dimanapun besarnya sama. Em = Ek maks = Ep maks Em = m 2 A2 = k A2 Kedudukan gerak harmonik sederhana pada saat Ep dan Ek bernilai maksimum dan minimum. d. Kecepatan Benda yang Bergetar Harmonik Untuk menghitung kecepatan maksimum benda atau pegas yang bergetar harmonik dapat dilakukan dengan menyamakan persamaan kinetik dan energi total mekaniknya dimana Ek = Em. Sedangkan untuk menghitung kecepatan benda di titik sembarang dilakukan dengan menggunakan persamaan kekekalan energi mekanik
Pengertian Getaran Harmonis Sumber Gerak harmonik merupakan gerak sebuah benda dimana grafik posisi partikel sebagai fungsi waktu berupa sinus dapat dinyatakan dalam bentuk sinus atau kosinus. Gerak semacam ini disebut gerak osilasi atau getaran harmonik. Contoh lain sistem yang melakukan getaran harmonik, antara lain, dawai pada alat musik, gelombang radio, arus listrik AC, dan denyut jantung. Galileo diduga telah mempergunakan denyut jantungnya untuk pengukuran waktu dalam pengamatan gerak. Sumber Gerak benda pada lantai licin dan terikat pada pegas untuk posisi normal a, teregang b, dan tertekan c. Memahami Getaran Harmonis Sobat Pintar, untuk memahami getaran harmonik, kita dapat mengamati gerakan sebuah benda yang diletakkan pada lantai licin dan diikatkan pada sebuah pegas . Anggap mula-mula benda berada pada posisi X = 0 sehingga pegas tidak tertekan atau teregang. Posisi seperti ini dinamakan posisi keseimbangan. Ketika benda ditekan ke kiri X = – pegas akan mendorong benda ke kanan, menuju posisi keseimbangan. Sebaliknya jika benda ditarik ke kanan, pegas akan menarik benda kembali ke arah posisi keseimbangan X = +. Gaya yang dilakukan pegas untuk mengembalikan benda pada posisi keseimbangan disebut gaya pemulih. Besarnya gaya pemulih menurut Robert Hooke dirumuskan sebagai berikut Fp = - kX Tanda minus menunjukkan bahwa gaya pemulih selalu pada arah yang berlawanan dengan simpangannya. Jika kita gabungkan persamaan di atas dengan hukum II Newton, maka diperoleh persamaan berikut Terlihat bahwa percepatan berbanding lurus dan arahnya berlawanan dengan simpangan. Hal ini merupakan karakteristik umum getaran harmonik. Syarat suatu gerak dikatakan getaran harmonik, antara lain 1. Gerakannya periodik bolak-balik. 2. Gerakannya selalu melewati posisi keseimbangan. 3. Percepatan atau gaya yang bekerja pada benda sebanding dengan posisi/simpangan benda. 4. Arah percepatan atau gaya yang bekerja pada benda selalu mengarah ke posisi keseimbangan. Periode dan Frekuensi Getaran Harmonis Periode dan Frekuensi Sistem Pegas Kita telah mempelajari gerak melingkar beraturan di kelas X. Pada dasarnya, gerak harmonik merupakan gerak melingkar beraturan pada salah satu sumbu utama. Oleh karena itu, periode dan frekuensi pada pegas dapat dihitung dengan menyamakan antara gaya pemulih F = - kX dan gaya sentripetal F=-4 phi2mf2X. Periode dan frekuensi sistem beban pegas hanya bergantung pada massa dan konstanta gaya pegas. Periode dan Frekuensi Bandul Sederhana Sebuah bandul sederhana terdiri atas sebuah beban bermassa m yang digantung di ujung tali ringan massanya dapat diabaikan yang panjangnya l. Jika beban ditarik ke satu sisi dan dilepaskan, maka beban berayun melalui titik keseimbangan menuju ke sisi yang lain. Jika amplitudo ayunan kecil, maka bandul melakukan getaran harmonik. Periode dan frekuensi getaran pada bandul sederhana sama seperti pada pegas. Artinya, periode dan frekuensinya dapat dihitung dengan menyamakan gaya pemulih dan gaya sentripetal. Sumber Periode dan frekuensi bandul sederhana tidak bergantung pada massa dan simpangan bandul, tetapi hanya bergantung pada panjang tali dan percepatan gravitasi setempat. Persamaan Getaran Harmonis Persamaan getaran harmonik diperoleh dengan memproyeksikan gerak melingkar terhadap sumbu untuk titik yang bergerak beraturan. Simpangan Getaran Harmonik Simpangan getaran harmonik sederhana dapat dianggap sebagai proyeksi partikel yang bergerak melingkar beraturan pada diameter lingkaran. Gambar dibawah melukiskan sebuah partikel yang bergerak melingkar beraturan dengan kecepatan sudut dan jari-jari A. Anggap mula-mula partikel berada di titik P. Proyeksi gerak melingkar beraturan terhadap sumbu Y merupakan getaran harmonik sederhana. Perhatikan gambar diatas. Setelah selang waktu t partikel berada di titik Q dan sudut yang ditempuh adalah Proyeksi titik Q terhadap diameter lingkaran sumbu Y adalah titik Qy. Jika garis OQy kita sebut y yang merupakan simpangan gerak harmonik sederhana, maka kita peroleh persamaan sebagai berikut Besar sudut dalam fungsi sinus disebut sudut fase. Jika partikel mula-mula berada pada posisi sudut, maka persamaannya dapat dituliskan sebagai berikut Sudut fase getaran harmoniknya adalah sebagai berikut Maka fase getaran harmonik adalah sebagai berikut Apabila sebuah benda bergetar harmonik mulai dari t = t1 hingga t = t2, maka beda fase benda tersebut adalah sebagai berikut Beda fase dalam getaran harmonik dinyatakan dengan nilai mulai dari nol sampai dengan satu. Bilangan bulat dalam beda fase dapat dihilangkan, misalnya beda fase 2 seperempat ditulis sebagai beda fase seperempat. Kecepatan Getaran Harmonik Kecepatan benda yang bergerak harmonik sederhana dapat diperoleh dari turunan pertama persamaan simpangan. Mengingat nilai maksimum dari fungsi cosinus adalah satu, maka kecepatan maksimum vmaks gerak harmonik sederhana adalah sebagai berikut Percepatan Getaran Harmonik Percepatan benda yang bergerak harmonik sederhana dapat diperoleh dari turunan pertama persamaan kecepatan atau turunan kedua persamaan simpangan. Karena nilai maksimum dari simpangan adalah sama dengan amplitudonya y = A, maka percepatan maksimumnya amaks gerak harmonik sederhana adalah sebagai berikut Energi Getaran Harmonis Energi Kinetik Gerak Harmonik Cobalah kita tinjau lebih lanjut energi kinetik dan kecepatan gerak harmoniknya. Jadi, energi kinetik maksimum pada gerak harmonik dicapai ketika berada di titik setimbang. Sedangkan energi kinetik minimum dicapai ketika berada di titik balik. Energi Potensial Gerak Harmonik Besar gaya yang bekerja pada getaran harmonik selalu berubah yaitu berbanding lurus dengan simpangannya F = ky. Secara matematis energi potensial yang dimiliki gerak harmonik dirumuskan sebagai berikut 1. Jawablah pertanyaan berikut ini! Sebuah pegas memiliki tetapan 5 N/m. Berapakah massa beban yang harus digantungkan agar pegas bertambah panjang 98 mm? A. 50 gram B. 100 gram C. 150 gram D. 200 gram E. 250 gram JAWABAN BENAR PEMBAHASAN 2. Jawablah pertanyaan berikut ini! Sebuah pegas memiliki tetapan 5 N/m. Berapakah periodenya jika beban tersebut digetarkan? A. B. C. D. E. JAWABAN BENAR D. PEMBAHASAN 3. Jawablah pertanyaan berikut ini! Simpangan x dari sebuah getaran partikel diberikan oleh persamaan di mana x dalam cm dan t dalam sekon. Tentukan frekuensi pada persamaan tersebut! A. 1,0 Hz B. 1,5 Hz C. 2,0 Hz D. 2,5 Hz E. 2,8 Hz JAWABAN BENAR PEMBAHASAN Secara umum Maka 4. Jawablah pertanyaan berikut ini! Tentukan posisi partikel saat t 2 s pada persamaan di mana x dalam cm dan t dalam sekon A. 0,62 cm B. 0,84 cm C. 1,20 cm D. 1,28 cm E. 2,40 cm JAWABAN BENAR PEMBAHASAN Pada saat t = 2 s maka posisi partikel 5. Jawablah pertanyaan berikut ini! Sebuah benda bermassa 2 kg dihubungkan ke sebuah pegas berkonstanta gaya 40 N/m. Benda tersebut bergerak dengan kelajuan 20 cm/s. Berapakah energi total benda, ketika berada pada posisi kesetimbangan? A. 2 x 10-2 J B. 4 x 10-2 J C. 6 x 10-2 J D. 8 x 10-2 J E. 12 x 10-2 J JAWABAN BENAR PEMBAHASAN Di titik setimbang x = 0 maka energi total benda sama dengan energi kinetiknya
dalam getaran harmonik percepatan getaran